
Creating tailorable optical traps with a
Digital Micromirror Device for the

Dysprosium quantum gas experiment

Bachelor Thesis
Natascha FRITSCHLE

Presented to
Dysprosium Labor

Physikalisches Institut 5
Universität Stuttgart

Examiner: Prof. Dr. Tilman PFAU
Supervisor: Dr. Lucas LAVOINE

17 th August, 2024

i

abstract
In physics it is desired to be able to generate customized optical potentials, since
they enable the study of e.g. exotic states of matter like supersolids and quantum
droplets. [35]

This Bachelor Thesis details the design of a system capable of generating cus-
tomizable potentials for capturing two-dimensional Bose-Einstein Condensates of
Dysprosium. The potentials are formed by adjusting the amplitude of a 532 nm
laser using a Digital Micromirror Device. The optimization loop, the traps preci-
sion and it’s stability are also discussed. The setup is optimized for the iris aperture
and the loop for the error of the gain. It is shown, that low gain values result in
a stable converging approximation of the desired potential and an iris aperture is
able to increase the flatness of it a bit.

zusammenfassung
In der Physik ist man bestrebt maßgeschneiderte optische Potential erzeugen zu
können, da diese das Erforschen von bspw. exotischen Zuständen wie supersolids
oder quantum droplets ermöglichen. [35]
In dieser Bachelorarbeit wird der Entwurf eines Systems beschrieben, das in der
Lage ist, maßgeschneiderte Potentiale zur Erfassung zweidimensionaler Bose-Einstein-
Kondensate von Dysprosium zu generieren. Die Potentiale werden gebildet, in-
dem die Amplitude eines 532 nm Lasers mit einem digitalen Mikrospiegelgerät
eingestellt wird . Die Optimierungsschleife, ihre Genauigkeit und die Stabilität der
Falle wird diskutiert.

Der Aufbau ist für die Verstärkung des Fehlers, sowie für die Iris-Blende opti-
miert. Dabei stellt sich heraus, dass kleine Verstärkungen besser geeignet sind, da
ihre Approximation an des gewünschte Potential stabil verläuft und eine Iris-Blende
die Flachheit der Potentiale etwas verbessern kann.

iii

ehrenwörtliche erklärung
Hiermit bestätige ich, dass ich diese Arbeit selbständig verfasst habe, ich keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe, alle wörtlich
oder sinngemäß aus fremden Werken übernommenen Aussagen als solche gekennze-
ichnet habe, die eingereichte Arbeit weder vollständig noch in wesentlichen Teilen
Gegenstand eines anderen Prüfungsverfahren war oder ist, der Inhalt des elektron-
ische Exemplars mit dem des Druckexemplars übereinstimmt.

Ort, Datum Unterschrift

contents
Abstract i
Zusammenfassung i
Ehrenwörtliche Erklärung iii
1 Introduction 1

2 Optical trapping 2

3 Digital Mircromirror Devices 4

3.1 Diffraction . 5

3.2 Diffraction pattern of the DMD . 6

3.3 Setup . 7

3.4 Point-Spread-Function . 8

4 Floyd-Steinberg Algorithm 8

4.1 Correction loop . 10

5 Experimental setup 10

5.1 Point-Spread-Function in framework of Digital Micromirror Devices . 12

5.2 Setting up the optimization loop . 13

5.3 Initial test - Optimization for a rectangle 16

5.4 Characterizing the approximation of the potential 19

5.5 Optimization of Kp . 21

5.6 Optimization for a torus . 22

5.7 Fluctuations . 24

5.8 Intensity compensation . 24

6 Conclusion and outlook 28

References 29

Appendix 32

introduction 1

1 introduction
The team in the 5 th physical institute in the university of Stuttgart achieved chromium
condensation in 2004.[1] More recently, they have observed dipolar quantum droplets[2]
and one-dimensional supersolids using Dysprosium atoms[3] .
Dysprosium is of striking interest, since the atoms have a high magnetic moment
µm ≈ 10µB

1, causing a dipolar interaction[4] between the atoms coming from the
magnatic dipole-dipole interaction. It is anisotropic and compared to short range
interactions typically employed in ultracold atoms, the interaction energy of dipoles
decays slow with 1/r3, which is why the interactions have a long range.[23], Their
interaction energy

Edip =
µ0
4π

[
m1m2

r3
−
3m1rm2r

r5

]
(1.1)

is dependant on the two magnetic dipoles m1,2 and their distance r, with µ0 the
permeability of free space.

Currently the team explores one-dimensional supersolids in a finite elongated
trap. They are aiming towards studying supersolids in torus geometry.

After laser cooling, when the temperature is low enough, temperatures of about
1 mK, atoms can be trapped and manipulated using a far-off-resonance optical
dipole trap.[6] Gaussian beams would result in a harmonic trap, to create non-
harmonic traps there are various approaches. For example various trap shapes can
be created using a Spatial Light Modulator. It can control and adjust the lights
intensity or phase quickly.

There are different types of Spatial Light Modulators, one of them being the Dig-
ital Micromirror Device. It consists of an array of micromirrors controlled by a
computer. Digital Micromirror Devices are widely used amongst different fields in-
cluding digital projectors for home theaters, cinemas, but also physics for creating
custom potentials.[34][24] These micromirrors only have two possible positions.

The goal of this thesis is to create tailorable optical traps using such a DMD. The
first part of the final setup with outcoupler, high power fiber as well as the first stage
of demagnification shall be set up. Next, a correction loop shall be implemented,
characterized and optimized for the gain of the error and the iris aperture.

A short overview of the theory of optical trapping is given in Chapter 2. It
contains the semiclassical approach for a two level system to calculate the dipole-
dipole interaction potential. Chapter 3 introduces the Digital Micromirror Device
and characterizes the diffraction patterns obtained by using one. The reasoning for
the chosen setup and the Point-Spread-Function are also discussed. The algorithm
that is used in the correction of the potentials in this thesis is explained in Chap-
ter 4. Afterwards, the optical setup is explained and characterized in Chapter 5.
Also here the Point-Spread-Function is discussed in the explicit framework of the
Digital Micromirror Device, as well as the setup of the loop, the characterization
of it’s precision, it’s initial test and performance for a rectangle and a torus. The
loop is optimized for different parameters. The fluctuations of the setup are char-
acterized and in an attempt to better the traps precision for the torus an intensity
compensation is implemented.

At last an overview of remaining adjustments and a conclusion is given in Chap-
ter 6.

1 Bohr magneton µB = 9.2740100657 · 10−24JT−1

optical trapping 2

2 optical trapping
Optical trapping, the art of using light to capture and control tiny particles, has
opened new frontiers in science. By exploiting the subtle forces of light, researchers
can manipulate everything from single molecules to living cells with extraordinary
precision.[5] This chapter gives a short overview over optical trapping using a semi-
classical approach. Considering a two level atom composed of |g⟩ the ground state
with energy
Eg = 0 and the excited states |e⟩ with energy Ee = hω0,

|e⟩

|g⟩

ω0

ωL

Figure 1: Schematic two level system. Figure inspired from [13].

as depicted in Figure 1.
The generic state of such a system

ψ = c1 |g⟩+ c2 |e⟩ , c1,2 ∈ C , |c1|
2 + |c2|

2 = 1 (2.1)

is given by the superposition of those two states. The density matrix operator is
given by

ρ =

[
ρgg ρeg
ρge ρee

]
=

[
|c1|

2 c∗2c1
c∗1c2 |c2|

2

]
, ρxy = |x⟩ ⟨y| , x,y ∈ {e,g} . (2.2)

Placing an atom in an electric field

EL(r, t) = εεεL(r) cos (ωLt+ϕ(r)) , (2.3)

where εεεL(r) is the polarization vector, a dipole moment p is induced. This can be
done by applying laser light on the atoms. The dipole moment oscillates with ωL,
also called pulsation. The dipole moment can be written as

p = α(ωL)E (2.4)

is dependant on the complex polarizability2 α.[13]

Using the density matrix from equation (2.2) and the electric dipole operator
d̂ = −ex̂ with x̂ being the position operator, the electric dipole moment can be
described alternatively as the trace of the matrix of the position operator multiplied
with the density matrix operator

p = Tr[ρ̂ · d̂] . (2.5)

To solve this equation, one can examine the evolution of the density operator. This
is done by using a semi-classical approach, where the motion of atoms is described

2 Normally α is a tensor, for this discussion it is a scalar.

optical trapping 3

classically while considering the quantum nature of their internal dynamics, This
allows to determine the average value of the dipolar interaction using the Liouville-
Von Neumann equation

dρ̂
dt

= −
i
 h
[Ĥ, ρ̂] . (2.6)

Using the potential for the coupled levels depicted in Figure 1

Vdip = p · E = −p0E(|e⟩ ⟨g|+ |g⟩ ⟨e|) cos (ωLt+ϕ) , (2.7)

inserting the Hamiltonian

Ĥ = hω0 |e⟩ ⟨a|+ Vdip (2.8)

and computing

dρeg
dt

= −iω0ρeg − iΩ cos (ωLt−ϕ)(ρgg − ρee) (2.9)

withΩ = p0E
 h defining the strength of the laser coupling and p0 the reduced atomic

dipole

ρeg(t) =
Ω

2

[
e−i(ωLt−ϕ)

ωL −ω0
−

ei(ωLt−ϕ)

ωL +ω0

]
= ρ∗ge (2.10)

is obtained.
To do so, the fact that the laser pulsation is far from resonance |ωL −ω0| ≫ 0 is
used, which allows to approximate ρgg = 1 and ρee = 0.

Given that, the value of the dipole operator can be calculated

p = Tr[ρ̂ · d̂] =
2p0ω0

 h(ω2
L −ω2

0)
E = α(ωL)E , (2.11)

defining α(ωL) =
2p0ω0

 h(ω2
L−ω2

0)
. [7]

Finally, the mean dipole interaction potential evaluated over time

Vdip = −
1

2
⟨p · E⟩ = Re(α)E2

2
= −

Re(α)I
2ε0c

(2.12)

is obtained. It holds the factor 1
2 to consider that the dipole moment is induced. It

depends on the lasers intensity I and to the real part of the polarizability α. This
real part corresponds to the in-phase component of the dipole oscillation, which is
crucial for determining the dispersive characteristics of the interaction. [6]

Figure 2 shows an energy diagram and illustrates how a gaussian beam forms
a trap. Detuning the laser frequency slightly lower than the resonance frequency,
ωL < ω0, provides a red-detuned trap. The potential (2.12) becomes negative,
attracting atoms.
For the blue-detuned trap the laser frequency is a bit higher than the resonance
frequency, ωL > ω0, creating a positive potential and thus rejecting atoms.[19]

digital mircromirror devices 4

Figure 2: Energy diagram for a two level atom. On the left, red-detuned light (ωL < ω0)
lowers the ground state energy and raises the excited state energy equally. On the
right, a Gaussian laser beam, forms a potential well in the ground state, trapping
the atom. Figure from [6].

The Dysprosium ground state has an angular momentum J = 8 and mJ = −8,
meaning it is an anisotropic medium. This means the polarizability α must be
treated as a tensor. Regarding this [20] and also that in this experiment a 532 nm
laser is chosen to trap the Dysprosium atoms, already a small deviation in the
wavelength can already change the polarizability significantly. To provide sufficient
trapping, one has to choose the polarization of light carefully.[14]

3 digital mircromirror devices
As mentioned earlier, the dysprosium team wants to explore the physics of dipolar
supersolids in a torus. One of the first steps towards that is to create an optical trap
with torus geometry.
Digital Micro Mirror Devices (DMDs) have emerged as powerful tools for creating
highly customizable optical traps.[35] Here, the V-9501 from Vialux is used.
The DMD surface of the chip consists of an array of 1920 x 1080 squared aluminium
mircomirrors of width d = 10.8µm. The effective width of the mirrors is
deff ≈ 10.2µm, since the fill factor is 94 %. Each micromirror can be tilted for
θB = ± 12

◦ around it’s diagonal axis.[10]
The mirrors have three possible states, named On, Off and the Parked state, de-

picted in Figure 3.

digital mircromirror devices 5

Figure 3: Three possible mirrorstates: On, Parked, Off for the DMD. The On state corre-
sponds to a white pixel, the Off state to a black pixel. The Parked state is the
defualt state when not using the DMD. Figure from [15].

The On(Off) state corresponds to a white(black) pixel, the Parked state is the
default state, when the DMD is not used.[10]

Thanks to the Python API[9] it is possible to access the DMD. One can display a
tailored image by loading an array onto the DMD. Due to the binarity of the states
of the micromirrors each mirror is represented by an entry in the loaded array of
either 1 or 0 (On or Off).

3.1 Diffraction

Due to the small size and the periodic arrangement of the mirrors the DMD acts
as a diffraction grating. The DMD’s intensity pattern is obtained by convolving it’s
grid pattern[25]

grid(x,y) =
∑

0⩽i<1920
0⩽j<1080

δ(x− ai,y− aj) , (3.1)

where δ(x,y) = δx,y, with a rectangle in two dimensions [25]

rect(x,y) =

{
1 if |x| ⩽ deff

2 ∧ |y| ⩽ deff
2 ,

0 if |x| > deff
2 ∨ |y| >

deff
2

(3.2)

since a single mirror of the DMD corresponds to a rectangle.

3.1.1 Diffraction of the grid

The DMD provides an additional degree of freedom beyond the standard configu-
ration: the ability to adjust the tilt angle of the mirrors.[13] For constructive inter-
ference the condition

mλ = deff(sinα+ sin θ0) , m ∈ Z (3.3)

needs to be fulfilled. The blazing condition refers to the specific alignment of the
mirror tilt angle, such that the reflected light is directed primarily into a desired
diffraction order m. This maximizes the efficiency of light in that order, enhancing
the intensity of the projected image.

digital mircromirror devices 6

Figure 4: Schematic illustration of the blazed grating on the DMD in 2D. The incident angle
is denoted by α, the mirror tilt is given by θB and the angle of for the zeroth order
θ0. Figure from [24]

The angles are defined according to Figure 4. Also, the light envelope is reflected
by each mirror, leading to a peak in intensity when the reflection condition for the
mirrors

θ0 = −α+ 2θB (3.4)

is met.[14] Using that, the intensity pattern of the DMD’s [25] grid is given by

Igrid =
∑

−∞<m<∞
−∞<n<∞

δ

(
sin(αx) + sin(θ0,x) −

mλ

deff
, sin(αy) + sin(θ0,y) −

nλ

deff

)
, (3.5)

where αx(y) and θ0,x(y) are the x(y) components of α, θ0 respectively. The diffrac-
tion order in 2D is denoted by m and n.

3.1.2 Diffraction of one single mirror

The diffraction of one single mirror is represented by (3.2). It’s Fourier transform

F[rect] = Rect ∝ sinc
(
πdeff
λ

(sin(θx) − sin(θsr,x))

)
sinc

(
πdeff
λ

(sin(θy) − sin(θsr,y))

)
(3.6)

is dependant on the angles θx = arcsin x
z and θy = arcsin x

z of the DMDs normal in
the x, respectively y axis. [25]

The angles θsr,x(y) are between the specular reflection and the DMD’s normal in
the x(y) axis.

Applying the Frauenhofer principle [18] the intensity pattern for a single mirror

Irect = Rect(x,y, z)2

∝ sinc
(
πdeff
λ

sin (θx) − sin (θsr,x)

)2

sinc
(
πdeff
λ

sin (θy) − sin (θsr,y)

)2 (3.7)

is obtained.[25]

3.2 Diffraction pattern of the DMD

Finally, the pattern on the DMD can be calculated by multiplying the two obtained
intensity patterns[25]

IDMD = I0sinc
(
πdeff
λ

sin (θx) − sin (θsr,x)

)2

sinc
(
πdeff
λ

sin (θy) − sin (θsr,y)

)2

∑
−∞<m<∞
−∞<n<∞

δ

(
sin(αx) + sin(θ0,x) −

mλ

deff
, sin(αy) + sin(θ0,y) −

nλ

deff

)
.

(3.8)

digital mircromirror devices 7

Figure 5: Relative intensity of the diffraction for the whole DMD as well as a single mirror.
For the DMD different orders are highlighted. Figure from [25].

Figure 5 depicts the calculated intensity patterns (3.8), (3.7). From now on the
main order is the order with the coefficent (m,n) with m=n.

3.3 Setup

The DMD is placed in the object plane, see Chapter 5 for experimental setup, the
error due to the tilt of the mirrors is neglectable, since the mirrorsize is very small
compared to the focal distance.

Figure 6: Blazed condition for different orders m ∈ {−8,−7,−6, ..., 0, 1}. The dashed vertical
line shows the incidence angle α for m=8 according to 3.3. The horizontal dashed
line shows the new diffraction condition (3.9). Figure from [25].

The goal is to maximize the intensity in one particular order, this can be done in
the blazing angle [17], which in this case is found to be equal to α = 30.5 ◦ for the
-8 th order, Figure 6 [25].

In order to reflect the light perpendicular to the DMD θ0 = 0 is chosen [14]
meaning the new condition that has to be fulfilled is

mλ = deff sinα . (3.9)

floyd-steinberg algorithm 8

Since α = 30.5 ◦ doesn’t satisfy (3.9), the closest feasible angle is

α = arcsin
8λ

deff
= 24.66 ◦ . (3.10)

3.4 Point-Spread-Function

When light passes through an optical system with finite size, a single point on the
object isn’t images as a perfect point. Instead, it appears as a spread-out pattern
called a point spread function (PSF), which is the diffraction pattern of a point
object after the optical setup.

15 10 5 0 5 10 15
15

10

5

0

5

10

15

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Simulated airy disk according to (3.11).

For spherical optics this spread-out pattern is well approximated by an airy disk

I(θ) = I0

(
J1(x)
x

)2

, x =
πD sin θ

λ
, (3.11)

see Figure 7 for a simulated example, where J1 is the Bessel function of first kind of
order and D is the diameter of the lens. [16]

4 floyd-steinberg algorithm
Due to inhomogenities of the light source and lens aberations the final image of the
DMD gets distorted. In order to reach the desired pattern it needs to be corrected,
the DMD’s binarity complicates this. It is necessary to find a suitable method to
control the spatial intensity. This section introduces the method used in this thesis.
In digital image processing, while images can be binarized based on a threshold to
simplify intensity values, dithering offers a more nuanced approach. Dithering is a
technique that strategically applies noise to the image in order to simulate graylevel
beyond a device’s color palette.
One of the most widely used algorithms for dithering is the Floyd-Steinberg algo-
rithm[8]. This method propagates quantization errors from pixel to pixel throughout
the image, effectively smoothing transitions and enhancing visual fidelity.

The effect is fascinating, Figure 8 shows a grayscale image in it’s original version
compared to the binarized and dithered version. The original and the dithered
image appear to look the same, although the dithered image actually is binary, yet
looks very different from the binarized image.

Only by looking very closely, one can see that the dithered image is a bit more
grainy. Zooming in to the eye, the binar structure of the image reveals itself and
one can get a feel for how the error is propagated along the image, see Figure 8 on
the right.

floyd-steinberg algorithm 9

Figure 8: On the left a greyscale image[12] is given, in the middle the binarized image with
a threshold of 128, and on the right the dithered image with the Floyd-Steinberg
algorithm. The small square in red is the area that was zoomed in. On the right is
the zoomed in part of the dithered Floyd-Steinberg image.

In mathematical terms the error is propagated with an error diffusion matrix [13]

I(i−1,j−1) I(i−1,j) I(i−1,j+1)

I(i,j−1) I(i,j) I(i,j+1)

I(i+1,j−1) I(i+1,j) I(i+1,j+1)

 = (4.1)

I(i−1,j−1) I(i−1,j) I(i−1,j+1)

I(i,j−1) I(i,j) I(i,j+1)

I(i+1,j−1) I(i+1,j) I(i+1,j+1)

+

 0 0 0

0 0 7
16

3
16

5
16

1
16

 · ϵ . (4.2)

in row-major order, beginning at pixel (0,0). Here, ϵ is the calculated error

ϵ = I(i,j) − round[I(i,j)] (4.3)

based on the normalized image and the function round[I(i,j)] , that rounds the value
I(i,j) to either 1 or 0. The matrix I here is a snippet of the normalized image
containing all the neighbouring pixels of the pixel (i,j) for some of which the error
from the binarization is currently distributed. The entries of the error diffusion
matrix are selected for a uniform intensity of 0.5 to produce a checkerboard pattern.
A graphic representation of the error propagation is given in Figure 9.[13]

Figure 9: Graphic representation of the error propagation of the Floyd-Steinberg algorithm
visualizing the error diffusion matrix (4.1). Figure from [13].

Thanks to the Python library pillow[27] the algorithm is easy to implement, but
comes with a loss of information compared to the original image, as the second
picture from the left in Figure 8 demonstrates.

experimental setup 10

4.1 Correction loop

Taking into account that the PSF can overlapp, Figure 12, grayscales can be achieved
using the correction method with the Floyd-Steinberg dithering. The correction loop
to iteratively obtain the desired potential is sketched in Figure 10. Iteration n pro-
duces the in the end of the loop the n th correction image. For iteration n+1 in the
beginning the error is calculated as the difference between the target image and the
n th recorded imagen multiplied by a constant Kp

error imagen = Kp · (target image − recorded imagen) , (4.4)

which directly yields the error of the pixel intensity values for the whole image.
Next, to the error image the (n− 1) th old image is added

new imagen = error imagen + old imagen−1 , (4.5)

where the old imagen−1 is the convolution of the (n-1) th recorded imagen−1 with
the point spread function.
For the first two iterations the old image is set equal to the target image, since there
yet isn’t an image to be able to compare it to. The obtained new image is passed
to the convolution with the point spread function, resizing to fit the DMDs size,
dithering and finally the Floyd-Steinberg algorithm.
Convolving old imagen−1 with the Point-Spread-Function produces old imagen
which is saved to use it in the next loop n+2.
It is necessary to convolve old imagen−1 in order to propagate the effect of the
DMD. The image after the Floyd-Steinberg (FS) algorithm, called FS image, is dis-
played onto the DMD.

Figure 10: Block schematic diagram of the correction loop used. The calculated output is
convolved with a point-spread-function, resized to fit the DMDs size and passed
on to the dithering and the Floyd Steinberg algorithm where the image is led to
the experiment.

The loop is automated and the code is uploaded to Github[11], there also the
README.md is located for further information of installation and dependencies.

5 experimental setup
The test setup is shown in Figure 11. In the Appendix 6 Figure 40 shows the final
setup intended to implement into the experiment. It is also already set up, but
wasn’t used to obtain the results discussed in this thesis.

experimental setup 11

Figure 11: Optical setup used in this thesis

The laser used is a 18 W Coherent Verdi V 10 532 nm laser. The used DMD is the
V-9501 from Vialux with a mirror size of d = 10.8µm and an effective mirror size of
deff ≈ 10.2µm. The setup doesn’t include an AOM for power stabilization, since it
broke during the thesis. In order to create tailored optical traps, it is neccessary to
use all micromirrors of the DMD, meaning the beam diameter must fit the DMDs
short axis. It is important to make sure that the beam also isn’t larger than the short
axis, otherwise additional stray light will be scattered off the metallic frame of the
DMD.

Furthermore the beam must be colliminated. The outcoming beam has a diameter
of dwaist ≈ 6.5 mm.

The beam shows a hexagon shape, see Figure, which is produced by the cladding
mode. It is not really possible to get rid of it[22]. The used outcoupler is a
Schäfter+Kirchhoff 60FS-SMA-T-23-M200-04, it was chosen due to the large beam
diameter after it. This way a telescope isn’t needed to fully illiminate the DMDs
short axis.

After the outcoupler the polarization of the beam is cleaned with a cube and a
λ
2 waveplate. The reflected pattern from the DMD has multiple orders, the iris is
positioned such that only the 8 th order, which is maximized in intensity, can pass
through the f1=400 nm lens. The next iris in front of the f2=100 mm lens smoothes
the edges, see Chapter 5.8.1. The telescope has a total demagnification of 4, in
order to perform the optimization loop and record the images on the camera prop-
erly. The used camera is a FLIR Blackfly S BFS-U3-120S4M with a pixel size of
dc,pxl = 1.85µm [33].
The setup planned to be implemented in the experiment is also already set up and
can be found with further explanations and reasoning in the appendix 6.

The DMD’s diffraction efficiency is measured to be 68 % in this setup, coming
close to 70 % Vialux claims for the blazing angle [10] .

Directly after the DMD one can get an intensity of 3.0 kW
m2 . Considering the de-

magnification of 1/75, an intensity of 16.88 MW
m2 is expected after the third demag-

nification stage in the final setup. Given the scalar polarizability at 532 nm for
Dysprosium α = 350u.a.[28] the potential depth has the order of magnitude of
T = 1µK.

experimental setup 12

5.1 Point-Spread-Function in framework of Digital Micromirror Devices

Taking into account geometrical optics, the displayed images from the DMD should
be just as binary as the mirror states on the DMD itself. But this is not the case.
Loading a chessboard to the DMD, Figure 12 on the left, the image in Figure 12 on
the right is deflected, this has to do with the previous mentioned PSF, see Chapter
3.4.

450 475 500 525 550 575 600 625 650

875

900

925

950

975

1000

1025

1050

Off state

On state

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

10

20

30

40

50

Figure 12: On the left the image loaded onto the DMD displaying a 200 x 200 px chessboard
in the center of the DMD, where each black or white field consists of two pixels.
On the right the corresponding recorded image is shown. It shows gray shades,
instead of a binary structure.

One has also to take into account that the airy disk only considers diffraction due
to finite aperture, but there is further due to aberrations resulting from the optics.
Given that, the electric fields associated with the PSF of two distant mirrors can
overlap and interfere together, which is why shades of grey can be seen in figure
12 on the right and not just black and white pixels. The overlap of multiple PSF is
illustrated in Figure 13.

Figure 13: Illustration of the overlap of multiple PSF. When images of individual DMD pixels
are projected onto the image plane, and the spot is much smaller than the pixel
size, the DMD pixels are distinctly visible. For instance, among the five active
pixels. Each is represented in a different color. Only the red one influences the
intensity at point P. However, if the image is blurred due to the limited resolution
of the imaging system, the pixels appear as large, overlapping spots. In this
scenario, all pixels within the orange circle affect the intensity at point P. In the
first case, where the PSF of the imaging system is symmetric, three out of the five
active pixels (red, blue, and green) significantly contribute to the intensity at point
P.[26] Figure from [26].

experimental setup 13

The same explanation for why the chessboard spreads out to a gray area is also
applyable to why the Einstein dithered image, Figure 8, seems to have gray tones.
It is because the human eye has finite optical resolution. It is important to point out
that the finite PSF is the reason why the optimization loop using the Floyd-Steinberg
dithering works. Only if the PSF is larger compared to the effective size of the
mirrors after the demagnification it is possible to create different gray shades with
the binar DMD.
Many illuminated pixels, as mentioned in the previous chapter, are desired not only
for creating a large pattern, but also to have many pixels contributing to the PSF,
resulting in a larger color palette in gray scale. This DMD has a relatively large
pixel size, which is not the best, because this makes the pixels distinguishable as
Figure 13 also demonstrates.

The resolution of the setup is determined by the minimal distance at which two
pixels can be distinguished. Turning a single pixel in the center of the DMD On, the
radius after which the intensity drops to zero is measured to be r = (7± 1)px. The
optical resolution is then found out to be o = (7± 1)px · dc,pxl = (13± 1.5)µm.

The image at the end of the optimization loop, Chapter 4.1, will be the convolu-
tion of the PSF with the pattern displayed onto the DMD. The calculation for that
is shown in the Listing 1.

Listing 1: Snippet of the Python code from the Appendix, where the image passed to the
Floyd-Steinberg dithering is created by convolving the PSF with new image. The
new image is defined according to Chapter 4.1. The size in pixels of the recorded
image is given by newsize in the code.

1

2 x=np.linspace(-newsize//2,newsize//2,newsize)

3 y=np.linspace(-newsize//2,newsize//2,newsize)

4 sigmax=1

5 sigmay=1

6

7 exp_convol=np.ones((newsize,newsize))

8 for i in range(exp_convol.shape[0]):

9 for k in range(exp_convol.shape[0]):

10 exp_convol[i,k]=1/2/np.pi/sigmax/sigmay*np.exp(-1/2*x[i]**2/sigmax**2-1/2*y[k

]**2/sigmay**2)

11 img_conv=scipy.signal.fftconvolve(new_img,exp_convol,mode="same")

12 img1=Image.fromarray(np.uint8((np.array(img_conv))),mode="L")

13 img1.save("previous.bmp")

14

15 img2=img1.resize((200, 200))

5.2 Setting up the optimization loop

In order to perform the optimization loop successfully one has to characterize the
deflected pattern from the DMD first.

experimental setup 14

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Off State

On State

Figure 14: Three points (two 4 px large and one 28 px large) are loaded onto the DMD. The
points are created by setting neighbouring pixels equal to one. In the bottom left
the point is chosen to be larger by turning more pixels on compared to the other
points. The zoomed in part is shown.

By choosing to display a pattern of three points with one selected to be larger
than the rest, Figure 14, one can find out the total transformation. Since the DMD is
mounted at 45

◦, the original pattern appears rotated on the camera. The pattern is
created by turning neighboring pixels on, meaning setting their value in the array
equal to one. For the recorded image, Figure 15, it is evident that the image has
undergone not just a rotation, but also a transposition.

0 100 200 300

0

100

200

300

400

500

600
50

100

150

200

250

Figure 15: Zoomed image recorded from the camera by loading an array corresponding to
Figure 14 to the DMD. The cameras position in the experimental setup is depicted
in Figure 11.

To measure the rotation angle, the image is first loaded, transposed and then
rotated such that the arrangement of the displayed image, Figure 14, is obtained.

experimental setup 15

Figure 16: Illustration of how the rotation angle is calculated using for example Inkscape.

This angle can be measured using software such as for example Inkscape by
loading the recorded image and measuring the angle between a horizontal line that
goes through the second highest point and a line that goes through the highest and
second highest point, see Figure 16.

0 100 200 300 400 500

0

100

200

300

400

500

50

100

150

200

250

Figure 17: Figure 15 rotated by the measured rotation angle −46.95 ◦ and cropped. The scale
on the right shows the pixel intensity value.

The rotation angle is found to be φ = (−46.95± 0.1) ◦, the rotated image is shown
in Figure 17, also an additional crop has been performed. The precision of the ro-
tation angle is limited by the extent of the points. The middle of the points was
chosen as crossing points of the lines.
To measure the demagnification, the distance between the upper two points is mea-
sured in pixels for the image loaded to the DMD dDMD and the image recorded by
the camera dCam. The recorded image is already rotated and transposed of course.
The distance for the DMD in pixels can be directly calculated from the passed ar-
ray. Also the effective pixel size for the DMD is used with one pixel corresponding
to one micro mirror. The measured distances are multiplied by it’s corresponding
pixel sizes, in order to get the distance in meters

dDMD = (300± 3)px · 10.2 µm
px

= (3.06± 0.03)mm (5.1)

dCam = (424± 3) · 1.85 µm
px

= (0.784± 0.006)mm . (5.2)

experimental setup 16

The error for the distances is estimated to be around 3 px. The ratio between the
two distances hold the demagnification

m =
dCam

dDMD
=

(0.784± 0.006)mm
(3.06± 0.03)mm

= 0.256± 0.004 . (5.3)

Compared to the ideal demagnification

mideal =
f2

f1
=
100mm
400mm

= 0.25 , (5.4)

the obtained value seems reasonable. With that measured, the first test of the loop
can be performed.

5.3 Initial test - Optimization for a rectangle

A 200 x 200 px rectangle is displayed onto the DMD, Figure 18.

0 500 1000

0

250

500

750

1000

1250

1500

1750

Off State

On State

Figure 18: Image loaded onto the DMD displaying a 200 x 200 px rectangle in it’s center.

A proper cropping of the transformed (transposed and rotated) recorded image
is crucial for the image to be corrected in the right way. Cropping too tight on one
edge will leave it uncorrected, see Figure 19, while cropping too loose the loop will
also the background of the deflected pattern into account and also calculate an error
for that. So the background will also be corrected, making the image larger. Also
now is clear why the rotation angle has to be really precise, if it is off, for a tight
crop it will cut the edges.

0 50 100 150 200 250 300

0

50

100

150

200

250

300 20

40

60

80

100

120

Figure 19: A 200 x 200 px rectangle is displayed onto the DMD. The optimization loop is
performed, but the recorded image is cropped too hard on it’s left and bottom
edge. As a consequence the edge isn’t corrected. The eight iteration is shown.
The image is cropped, rotated and zoomed.

In order to find the best crop just the edges of a 200 x 200 px square are displayed,
Figure 20. This is the easiest method to do so, since the edges are high in contrast.

experimental setup 17

0 50 100 150 200 250

0

50

100

150

200

250
Off State

On State

Figure 20: On the left the zoomed image loaded onto the DMD is shown. It is created
by a 199 x 199 px square subtracted from a 200 x 200 px square. On the right the
recorded image is shown. The image is cropped tight to it’s edges, getting the
best result for the onwards performed optimization. Instead of grayscale this
colormap is chosen for higher contrast.

With that performed, the transformed recorded image, that will be further used
in the algorithm is ready, Figure 21.

0 50 100 150 200 250

0

50

100

150

200

250

Iteration 1

0

50

100

150

200

250

Figure 21: Cropped recorded image for the DMD deflecting Figure 18.

The cropped recorded image, Figure 21, shows a good crop. It needs to be ad-
justed over time a little bit, this is not automizable since the available methods like
pythons edge detection aren’t precise enough.

The recorded image is 293 x 293 px large, the target is automatically defined to
have the same size in the code.

The optimization loop corrects the image to a defined intensity level. The error
image (4.4) is calculated based on a defined target image. Since the DMD is binary
and thus the loaded pattern has a maximum intensity of 1, it has to be scaled by a
value called minP. This value scales the level to which the intensity of the image will
be corrected. Besides scaling the loaded pattern it has to be cropped to the desired
target pattern.

All images used in the correction loop in the Appendix shall be shown and dis-
cussed here. The recorded image, cropped, rotated and transposed, now is ready
to use. To be able to compare the error image, the target image has to be defined,
which is simply the image displayed onto the DMD scaled by a value minP.

The error image, see Figure 22 on the left, is obtained by subtracting the recorded
image from the target image and multiplying the difference by a value Kp, in this
case Kp=0.2 . The target image is obtained by cropping the pattern of the rectangle
in Figure 18 and multiplying it with a value minP that scales the intensity to which

experimental setup 18

the pattern shall be corrected, since the DMD is binary in it’s intensity values. After
that, it is used to calculate the new image, see the image on the left in Figure 23, by
adding it to the old image, which is equal to the target image for the first correction.
The new image then is convoluted, middle image in Figure 23 and resized to fit
the DMD’s size 23. After that a background of intensity value zero that matches
the DMD’s size is added below the new image and it is dithered, creating the final
image, see Figure 22.

0 50 100 150 200 250

0

50

100

150

200

250

Error

30

20

10

0

10

450 475 500 525 550 575 600 625

875

900

925

950

975

1000

1025

1050
0.0

0.2

0.4

0.6

0.8

1.0

Figure 22: On the left: The error image obtained according to (4.4) with Kp=0.2 . The target
image is obtained by cropping the pattern of the rectangle in Figure 18 and mul-
tiplying it with a value minP that scales the intensity to which the pattern shall
be corrected, since the DMD is binary in it’s intensity values. On the right the
zoomed Floyd-Steinberg dithered image. It is placed on top of an array consisting
of zeros, that matches the DMD’s size. In the top the error is negative, the reaction
to that can clearly be seen in the dithered image: In the top a lot of pixels are set
equal to zero, removing intensity.

0 50 100 150 200 250

0

50

100

150

200

250

New image

50

60

70

80

90

0 50 100 150 200 250

0

50

100

150

200

250

Convolution

30

40

50

60

70

80

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

Resized convolution

40

50

60

70

80

Figure 23: On the left the new image according to (4.5), where the old image is the target
image. In the middle the convoluted image and on the right the convolulted
image resized to fit the DMD’s size.

experimental setup 19

0 50 100 150 200 250 300
Row

0

25

50

75

100

125

150

175

M
ea

n
ro

w
in

te
ns

ity

0
1
2
3
4
5

6
7
8
9
Target

Figure 24: Average intensity of the rows of the displayed rectangle for the iterations zero
(display) to nine (final corrected image). The intensity profile of the convoluted
target pattern is also displayed as a reference.

The intensity profile clearly converges, Figure 24 shows the rows intensity average
plotted over the rows number for different iteration numbers. It is also visible, that
the profile smoothens a lot. In order to provide a more informative plot, because
this method neglects the intensity distribution of the columns, a 2D plot for different
iterations is shown in Figure 25. Iterations zero (the initial display), one and nine
have been chosen, since the error and flatness, Figure 26, start to converge. Meaning
for those iterations the evolution is visible best.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Display

50

100

150

200

250

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Iteration 1

0

50

100

150

200

250

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Iteration 9

0

50

100

150

200

250

Figure 25: 2D plot of the intensity profile of the initially displayed 200 x 200 px rectangle, the
initial display, first and the final correction image from left to right. The intensity
level clearly converges, while also becoming more flat.

5.4 Characterizing the approximation of the potential

To characterize the approximation of the potential the error is calculated as rms

ϵRMS[%] = 100

√√√√√ 1

IJ

(I,J)∑
(i,j)

(
T(i,j) −D(i,j)

C

)2

, (5.5)

experimental setup 20

where T corresponds to the matrix of the target image, D corresponds to the data
matrix of the recorded image, C corresponds to the difference between the mini-
mum and the maximum intensity value of the recorded image. It is important here
that just pixels contributing to the target are considered here, without the back-
ground of the image.

The length of the rows and columns of the turned on pixel values in the recorded
image is given by I,J respectively.

The flatness

F[%] = 100

1−
√√√√√ 1

IJ

(I,J)∑
(i,j)

(P(i,j) − M
M

)2

 (5.6)

is a further tool to characterize how well the potential approximates the desired
pattern, where

M =

√√√√∑(I,J)
(i,j) P(i,j)

IJ
(5.7)

is the root mean intensity of the potential displayed and P corresponds to the matrix
of the cropped target. The target is cropped in such a way that the edge’s gradient
isn’t considered. [13]

Figure 26 shows the calculated error and flatness according to (5.5) and (5.6).

0 2 4 6 8
Iteration

10

20

30

40

50

60

70

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

83

84

85

86

87

88

89

Fl
at

ne
ss

 in
 %

Data

Figure 26: The error and flatness are calculated for each iteration according to (5.5) and (5.6)
and plotted against the iteration at which the image was taken. The initial display
is denoted with iteration zero, all in all ten iterations were performed. The error
clearly converges, Kp=0.2 was chosen. The flatness also increases.

The error already starts to converge after iteration two, reaching a minimum
value of ϵmin = 5.34% at iteration ten. The flatness doesn’t reach as good values
as the error, it’s maximum is Fmax = 89.30% at iteration three and decreases after
that, converging to a value of F= 88.5%. This is because the final array loaded onto
the DMD has irregularly mirrors in the On and Off state compared to the initial
loaded array where for the target pattern all mirrors are in the On state. This means
the ’roughness’ of the DMD’s surface increases due to the correction, leading to
speckles, Figure 27. This can be compensated a little bit with a larger PSF and will
be further discussed in Chapter 5.8.1.

The error of the potentials can be treated as a perturbation, which has important
consequences on the quantum gas regarding density modifications and energy scale
changes, for further details see [32].

experimental setup 21

0 20 40 60 80

0

20

40

60

80

Display

80

90

100

110

120

130

140

150

160

0 20 40 60 80

0

20

40

60

80

Iteration 9

40

50

60

70

80

90

100

Figure 27: Zoom for the display and the final iteration of the 2D plot in Figure 25. On
the left the zoomed display and on the right the zoomed final corrected image
for iteration 9. The loop creates a speckle like image in the end, because the
’roughness’ of the DMD increases due to mirrors being irregularly in the On and
Off state in the corrected image.

General limitations of the optimization loop are dirt on the camera glass, mirrors,
or other optical elements used, the crop and the precision of the rotation angle.

5.5 Optimization of Kp

The loop from section 4.1 yields the constant Kp that scales the calculated error.
The goal is to find the best possible Kp regarding the amount of iterations needed

to achieve a good potential. Different Kp’s result in varied reactions regarding the
time needed to achieve a good corrected image as well as the convergence of the
error and the flatness along the iterations.

This is the reason why the error is scaled and Kp is not just set equal to one, since
a change on the DMD won’t change the recorded image in the same way due to
aberrations and PSF.

It is expected that higher Kp will be worse, because they will take more iterations
to achieve a good image, since the error will likely oscillate.

The 200 x 200 px rectangle is displayed to the DMD, see Figure 21. The correction
loop is performed for the values

Kp ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} . (5.8)

In the Appendix the Table 1 shows the error and flatness according to (5.5) and
(5.6) for all the Kp values, the expected behaviour is verified.

When using lower Kps, the system converges slowly, while higher gains can lead
to instability. It alternately overshoots (resulting in a density lower than the target)
and undershoots (yielding a density higher than the target). The magnitude of these
deviations from the target is roughly equal, which is why there isn’t a significant
impact on the flatness F.[30] The best compromise is to be found for Kp=0.2 . This
value will be used for coming measurements. Compared to the initial test in Figure
26 the intensity of the laser was turned a bit down to reduce the error of the initial
display.

experimental setup 22

5.6 Optimization for a torus

In order to show that arbitrary traps can be displayed onto the DMD now a more
complicated pattern is chosen to be optimized. A torus with outer radius router=200 px
and inner radius rinner=130 px is loaded in the center of the DMD, Figure 28.

0 500 1000

0

250

500

750

1000

1250

1500

1750

Off state

On state

Figure 28: A torus with outer radius r=200 px and and inner radius rinner=130 px is loaded
in the center of the DMD.

The recorded image is shown in Figure 29.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

Camera dirt

20

40

60

80

100

120

Figure 29: Recorded image for the initial display of the pattern in Figure 28. The red circle
inside the area of the torrus marks a position where most likely camera dirt is
located which is blocking off the light causing a higher error propagation since
the optimization will constantly percieve this as an error in the actual image,
rather than the recorded image limited by the glas infront of the camera sensor.

Like for the rectangle a good crop is crucial, the recorded image of the torus
should ideally be cropped perfectly symmetrical. The torus brings some additional
difficulties for the correction considering the noise in the background. Since it
is not really possible to get rid of it long term by using the correction loop, the
calculated error image has to be modified. A mask is used that sets all the values
in the background outside of the torus shape to zero. The comparison between the
normal error image and the cleaned error image is shown in Figure 30. For the two
images on the right for the color map a clip has been performed, in order to see the
effects of the mask more clearly.

experimental setup 23

Figure 30: On the left: Calculated error image from the target image, and recorded image of
the initial display, Figure 29. The error is scaled by Kp=0.2, since this is found out
to be the best value in Chapter 5.5. The target image is the zoomed in part on the
torus pattern in Figure 28 scaled by a value minP. In the middle the same error
image is shown, this time with a changed colorbar ranging from -2 to 1 in order
to see the background noise better. On the right the cleaned error image with the
performed mask is shown. It uses the same colorbar as the image in the middle.

To prevent masking parts of the torus due to a slightly asymmetrical crop, the
mask is performed for router=201 px and rinner=129 px.

The target has to match the recorded images size in pixels. Here the previous
calculated demagnification, see Chapter 5.2, comes into play, since the target image
has to match the recorded images size. To do so, the outer and inner radius of the
torus for the target are multiplied with the magnification, it has to be multiplied
by the pixel ratio of the DMD and the used camera. Alternatively one could also
use router=200 px and rinner=130 px for the target and multiply the displayed pattern
with the demagnification. Both methods are equal, one just has to make sure that
the deflected image is large enough in order to prevent limitations due to the camera
pixel size.

Figure 31 shows the intensity profile of the torus along each iteration.

0 2
3
2

2
Polar angle in rad

40

60

80

100

120

140

Av
er

ag
e

in
te

ns
ity

0
1
2
3
4
5
6
7
8
Target

Figure 31: Intensity profile of the torus. For each iteration the average intensity is calculated
along the polar angle of the torus. The intensity of the target is also plotted.

The error and flatness calculated according to (5.5) and (5.6) are shown in Figure
32. The converging error is very high, even at the 8 th iteration ϵ = 25%. The
loop was stopped already at the 8 th iteration, because the image already started
converging, but it looked like it wouldn’t get significantly better.

experimental setup 24

0 1 2 3 4 5 6 7 8
Iteration

25

50

75

100

125

150

175

Er
ro

r i
n

%

Data

0 1 2 3 4 5 6 7 8
Iteration

83

84

85

86

87

Fl
at

ne
ss

 in
 %

Data

Figure 32: Error on the left and flatness on the right according to (5.5) and (5.6) for the torus,
Figure 28. Kp=0.2.

5.7 Fluctuations

The error for the torus is most likely that high due to intensity fluctuations. Due
to the lacking laser-power stabilization, there are large fluctuations regarding the
intensity of the displayed image that can even be seen even by eye. To quantify the
intensity fluctuations a deflected rectangle from the DMD is recorded with a camera
for 5 minutes, because that corresponds to the order of magnitude of a measurement
and this way also temperature fluctuations are taken into account. Approximately
every 0.05 s the camera took a picture.

Figure 33: Fluctuation of the mean value of the first recorded image. The fluctuation takes
into account the center of mass for the x and y coordinate according to (5.9).

The graph is shown in figure 33. The center of mass is calculated for the recorded
images using the function scipy.ndimage.center_of_mass() from the Python library scipy.ndimage.

It is calculated as

xcom =

∑
x

∑
y x · I(x,y)∑

x

∑
y I(x,y)

ycom =

∑
x

∑
y y · I(x,y)∑

x

∑
y I(x,y)

(5.9)

where x(y) represents the pixels along the columns(rows) and I represents the pixel
intensity value. The images are cropped before calculating the center of mass to
possibly disregard the effects of noise. Furthermore the deviation of the center of
mass (COM) is plotted. As a reference value the average intensity of all of the COM
values was used. A fluctuation of 6 px is very high, which explains why the loop
converges to such a high error.

5.8 Intensity compensation

In an attempt to minimize the error a time averaging of the images recorded by the
camera was tried, this way the intensity would be averaged over time and small
fluctuations wouldn’t come into weight that much. Since this method is not really
promising, the best method found out is presented here.

experimental setup 25

To perform the optimization loop properly, an intensity compensation is imple-
mented into it.

0 500 1000

0

250

500

750

1000

1250

1500

1750

Off state

On state

Figure 34: Torus with outer radius router = 200px and inner radius rinner = 130px in the
center of the DMD. Next to the torus a small 60 x 60 px rectangle is displayed that
will not be considered by the correction loop and acts as a reference for how the
intensity changed.

This is done by adding a small rectangle to the displayed pattern that acts as a
reference of the intensity fluctuation, see Figure 34. The torus will still be cropped
out as usual to perform the optimization. The desired converging intensity is still
defined by the minP value that scales the target patter.

The small rectangle is cropped seperately. The crop goes about 5 px beyond the
rectangles edges because this way it is possible to leave the crop the same over the
whole loop. Even for small position fluctuations the tight crop will work.

To compensate the intensity fluctuations the minP value has to be changed for
each iteration. The average intensity of the small square in the inital display defines
the reference intensity. If in the next iteration the intensity changed compared to the
initial display, the initially defined minP value is also changes by the same amount.
So for example the recorded images shall converge to an intensity of 80, meaning
minPdisplay=80. For the display the average intensity of the small square is 90. For
the first iteration it is 96, meaning a change in intensity of 6.7 %. So in the first
iteration minPiteration1 = 80 · 1.067 = 85.36. If for the second iteration the mean
intensity of the small square is 90, minPiteration2=minPdisplay.
This way the calculated error neglects the intensity fluctuation.

With that done, the loop as explained in Figure 10 can be performed.
The mean intensity converges more nicely, as depicted in Figure 35.

Figure 35: Mean intensities of the torus recorded for each iteration of the optimization loop.
This plot shows the converging intensity using the compensation method.

experimental setup 26

The error and flatness obtained with the intensity compensation are depicted in
Figure 36. The converging minimal error value now is 6.3 %, which is definetely an
improvement compared to 25 % with the method without any compensation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

6

8

10

12

14

16

Er
ro

r i
n

%

Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

84.0

84.5

85.0

85.5

86.0

86.5

Fl
at

ne
ss

 in
 %

Data

Figure 36: Error and flatness according to (5.5) and (5.6) for the torus, Figure 34, with imple-
mented intensity compensation. Kp=0.2

But this method comes with a slight loss of flatness.

5.8.1 Optimization for the iris Aperture

The flatness of the image can be increased using an iris. Figure 37 shows the size of
the PSF for different iris apertures.

Figure 37: One pixel in the center of the DMD is turned On. The deflected image is recorded
for different aperture sizes. The PSF extracted from the images is plotted for
different iris aperture sizes. The PSF gets larger with smaller iris size, resulting
in a more blurred and thus flatened image. For the blue curve the iris diameter is
12 mm. For the orange curve 9.2 mm, for the green 6 mm, for the purple 2.7 mm
and for the red 0.2 mm.

This works, because the iris is positioned in the fourier plane. By closing the iris
the high frequencies are removed and the image gets more blurry, increasing the
flatness. Figure 38 shows the image at iteration 11 of the optimization loop using
the intensity compensation with open, quarter, half and three quarter open iris. The
effect is visible. The smoothness increases with the closing of the iris, but the blur
also causes less sharp defined edges making it harder to correct the image, Figure
39.

The flatness for the 2D plot is calculated like this

flatness image = 1−
recorded image − mean(polar image)

mean(polar image)
, (5.10)

using Pythons library numpy [31]. An additional mask setting the background to
zero after that calculation is performed.

experimental setup 27

0 50 100 150 200 250

0

25

50

75

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
la

tiv
e

fla
tn

es
s

(a)

0 50 100 150 200 250

0

25

50

75

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
la

tiv
e

fla
tn

es
s

(b)

0 50 100 150 200 250

0

25

50

75

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
la

tiv
e

fla
tn

es
s

(c)

0 50 100 150 200 250

0

25

50

75

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
la

tiv
e

fla
tn

es
s

(d)

Figure 38: Zoomed in part of the tours. From top left to bottom right relative flatness accord-
ing to (5.10) for iteration 11 of the optimization loop for fully open (a), quarter (b),
half (c) and three quarter (d) open iris. Plots show the relative flatness, meaning
an intensity of 1 is perfect.

A half closed iris is found to be the best, since the image is noticable less grainy
compared to a fully open iris but it still offers a sufficient sharpness at the edges.

0 5 10 15 20
Iteration

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

Er
ro

r i
n

%

Data

0 5 10 15 20
Iteration

88.0

88.2

88.4

88.6

88.8

89.0

Fl
at

ne
ss

 in
 %

Data

Figure 39: Error and flatness for a torrus for different iterations of the optimization loop with
implemented intensity compensation and a quarter closed iris.

Regarding the flatness there is a small improvement, Figure 39, regarding the
error it got slightly worse. Compared to Figure 36 the error is a bit lower at the
start, because the laser intensity was scaled a bit lower and is converging to a value
of ≈ 7%, which is a bit higher than for the method without the iris, where the error
was converging to ≈ 6% , Figure 36. The raised error is due to the fact that because
of the more closed iris the edges of the torus are also more blurred, causing a higher
error.

It stands out, that the flatness is already better from the start with F=88 %, com-
pared to F=85.1 % without the irirs, Figure 36. It oscillates between the value of 88 %
and 89 %, overall converging to a higher value of 88.3 % compared to 85.4 % .

The tradeoff of the slightly higher error, but improved flatness seems good.

conclusion and outlook 28

6 conclusion and outlook
In this thesis the first steps towards creating tailorable optical potentials using a
digital micromirror (DMD) device were performed. The DMD was characterized.
It’s diffraction efficiency in this setup is ≈ 68%, the estimated potential depth that
can be reached is T = 0.1µK An optimization loop was implemented in Python
and it was shown that the loop works. The loop was tested first for a rectangle
and optimized for the gain of the error Kp. The best value was found out to be
Kp=0.2. The loop for the rectangle is converging to an error of ϵ ≈ 6% and flatness
of F≈ 88.7%. After that it was performed for a torus, reaching a minimal error of
ϵ ≈ 25% and a converging flatness of F≈ 86%. The fluctuations in the lab were
quantified reaching 6 px of deviation from the center of mass. An intensity compen-
sation for the torus was implemented to reduce the error. The new minimal error
for the torus is ϵ ≈ 6.3% and a converging flatness of F≈ 85.4%. After that the
setup was optimized for iris aperture, the best was found to be a half closed, which
improved the flatness to a converging value of F≈ 88.3%. The iris improved the flat-
ness, because it is placed in the Fourier plane, making the Point-Spread-Function
larger and removing high frequencies, blurring the image more. The error is worse,
because the aperture causes the edges of the torus to be less sharp.

The values are still not at the limit of achievable precision, regarding that errors
of ϵ ≈ 3% and flatnesses of F ≈ 95% can be reached [13]. For the flatness there is
the most amount of possible improvement.

Nevertheless, the achieved values in this thesis come close. An AOM for better
power stabilization will likely improve the results. Also an isolation to reduce air
flow or temperature fluctuations will help get better results.

references 29

references
[1] Axel Griesmaier et al. Bose-Einstein Condensation of Chromium. Physi-

cal Review Letters (2005). DOI https://doi.org/https://doi.org/10.1103/
PhysRevLett.94.160401

[2] Matthias Wenzel. Macroscopic States of Dipolar Quantum Gases. PhD thesis.
Universität Stuttgart, 2018.

[3] Fabian Böttcher et al. Transient supersolid properties in an array of dipolar
quantum droplets. Physical Review X (2019). DOI https://doi.org/https:

//doi.org/10.1103/PhysRevX.9.011051

[4] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra, B. L. Lev, and
T. Pfau. Dipolar physics: A review of experiments with magnetic quantum
gases. Nov 2022

[5] Ashkin, A. (1997). Optical trapping and manipulation of neutral particles us-
ing lasers.

[6] Rudolf Grimm and Matthias Weidemüller, Yurii B. Ovchinnikov. Opti-
cal dipole traps for neutral atoms. DOI https://arxiv.org/pdf/physics/

9902072

[7] Prof. Jean Dalibard. Collège de France lectures, Optical lattices, 2013. DOI
https://pro.college-de-france.fr/jean.dalibard/index_en.html

[8] R.W. Floyd, L. Steinberg. An Adaptive Algorithm for Spatial Gray Scale. In
Proceedings of SID (Society for Information Displays) – Digest of technical
papers, pp. 36–37. 1975.

[9] Gitproject Python control module for Vialux DMDs based on ALP4.X API.
DOI https://github.com/wavefrontshaping/ALP4lib, 16.07.24

[10] Vialux. Superspeed V models productdescription. DOI https://www.vialux.
de/en/superspeed-v-modules.html

[11] Gitproject to the code for the optimazation loop https://github.com/

natschoes/DMD/tree/main

[12] Einstein picture, Badische Zeitung https://www.badische-zeitung.de/

panorama/einstein-archiv-nun-im-internet--57242520.html 04.07.2024

[13] Elia Perego. Generation of arbitrary optical potentials for atomic physics ex-
periments using a Digital Micromirror Device. University of Florence. Master
thesis.

[14] Thibault Bourgeois. Tailorable optical trap with Digital Micromirror Device
for Dysprosium experiment. Physikalisches Institut Universität Heidelberg.
Bachelor’s thesis.

[15] Leerin Perumal, Andrew Forbes. J. Opt. 25 074003. 2023. DOI https://

iopscience.iop.org/article/10.1088/2040-8986/acd563/pdf

[16] Smith, W. J. (2007). Modern Optical Engineering (4th ed.). McGraw-Hill Pro-
fessional.

[17] Thorlabs https://www.thorlabs.com/newgrouppage9.cfm?objectgroupid=

9026

[18] Robert K Tyson. Fresnel and Fraunhofer diffraction and wave optics. IOP Pub-
lishing, 2014. DOI https://doi.org/10.1088/978-0-750-31056-7ch3.

https://doi.org/https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/https://doi.org/10.1103/PhysRevX.9.011051
https://arxiv.org/pdf/physics/9902072
https://arxiv.org/pdf/physics/9902072
https://pro.college-de-france.fr/jean.dalibard/index_en.html
https://github.com/wavefrontshaping/ALP4lib
https://www.vialux.de/en/superspeed-v-modules.html
https://www.vialux.de/en/superspeed-v-modules.html
https://github.com/natschoes/DMD/tree/main
https://github.com/natschoes/DMD/tree/main
https://www.badische-zeitung.de/panorama/einstein-archiv-nun-im-internet--57242520.html
https://www.badische-zeitung.de/panorama/einstein-archiv-nun-im-internet--57242520.html
https://iopscience.iop.org/article/10.1088/2040-8986/acd563/pdf
https://iopscience.iop.org/article/10.1088/2040-8986/acd563/pdf
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup id=9026
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup id=9026
https://doi.org/10.1088/978-0-750-31056-7ch3

references 30

[19] C. J. Foot, et al. Optical Dipole Traps for Neutral Atoms. Reports on Progress
in Physics

[20] J. H. Becher, S. Baier, K. Aikawa, M. Lepers, J.-F. Wyart, O. Dulieu, and F.
Ferlaino. Anisotropic polarizability of erbium atoms. Phys. Rev. A, 97 :012509,
Jan 2018

[21] Hui Li, Jean-François Wyart, Olivier Dulieu, and Maxence Lepers. Anisotropic
optical trapping as a manifestation of the complex electronic structure of ul-
tracold lanthanide atoms : The example of holmium. Phys. Rev. A, 95 :062508,
Jun 2017.

[22] Xiuli Jiang, Zhengtian Gu, Li Zheng. Cladding modes in pho-
tonic crystal fiber: characteristics and sensitivity to surround-
ing refractive index. DOI https://www.spiedigitallibrary.

org/journals/optical-engineering/volume-55/issue-1/017106/

Cladding-modes-in-photonic-crystal-fiber--characteristics-and-sensitivity/

10.1117/1.OE.55.1.017106.full, 12.07.24

[23] Jackson, J. D. (1999). Classical Electrodynamics (3rd ed.). Wiley

[24] Popoff, S. M., Bromberg, Y., Matthès, M. W., Gutiérrez-Cuevas, R. (2023). A
Practical Guide to Digital Micro-mirror Devices (DMDs) for Wavefront Shap-
ing. arXiv Preprint, arXiv:2311.17496. DOI https://arxiv.org/pdf/2311.

17496

[25] Gaetan Clément. Installation and characterization of a digital micromirror
device on a quantum gas experiment. Physikalisches Institut 5, Universität
Stuttgart. Internship report.

[26] Mohammadamin Tajik, Bernhard Rauer, Thomas Schweigler, Fed-
erica Cataldini, João Sabino, et al.. Designing arbitrary one-
dimensional potentials on an atom chip. Optics Express, 2019, 27 (23),
pp.33474-33487. 10.1364/OE.27.033474. hal-02402473. DOI https://hal.

sorbonne-universite.fr/hal-02402473v1/file/oe-27-23-33474.pdf

[27] Python. Pillow library https://pypi.org/project/pillow/

[28] Philipp Ilzhöfer. Creation ofDipolar Quantum Mixturesof Erbium and Dys-
prosium. PhD thesis. University of Innsbruck, 2020.

[29] Damien Bloch, Britton Hofer, Sam R. Cohen, Maxence Lepers, An-
toine Browaeys, and Igor Ferrier-Barbut1. Université Paris-Saclay, Insti-
tut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127,
Palaiseau, France & Laboratoire Interdisciplinaire Carnot de Bourgogne,
CNRS, Université de Bourgogne, 21078 Dijon, France. Anisotropic polar-
izability of Dy at 532 nm on the intercombination transition. DOI https:

//arxiv.org/pdf/2404.10480

[30] Édouard Le Cerf. Demixing phenomena in 2D Bose gases. Physics [physics].
Sorbonne Université, 2020. English. NNT : tel-03019926v2

[31] Python. Numpy library. DOI https://numpy.org/

[32] Thibault Bourgeois, Lauriane Chomaz. Physikalisches Institut, Universität
Heidelberg & Département de Physique, Ecole Normale Supérieure, Paris.
How is the density of quasi-two-dimensional uniform dipolar quantum Bose
gases affected by trap imperfections? March 8, 2024

[33] Edmund optics. BFS-U3-120S4M-CS USB 3.1 Blackfly® S,
Monochrome Camera. https://www.edmundoptics.com/p/

BFS-U3-120S4M-CS-USB3-Blackflyreg-S-Monochrome-Camera/40171

https://www.spiedigitallibrary.org/journals/optical-engineering/volume-55/issue-1/017106/Cladding-modes-in-photonic-crystal-fiber--characteristics-and-sensitivity/10.1117/1.OE.55.1.017106.full
https://www.spiedigitallibrary.org/journals/optical-engineering/volume-55/issue-1/017106/Cladding-modes-in-photonic-crystal-fiber--characteristics-and-sensitivity/10.1117/1.OE.55.1.017106.full
https://www.spiedigitallibrary.org/journals/optical-engineering/volume-55/issue-1/017106/Cladding-modes-in-photonic-crystal-fiber--characteristics-and-sensitivity/10.1117/1.OE.55.1.017106.full
https://www.spiedigitallibrary.org/journals/optical-engineering/volume-55/issue-1/017106/Cladding-modes-in-photonic-crystal-fiber--characteristics-and-sensitivity/10.1117/1.OE.55.1.017106.full
https://arxiv.org/pdf/2311.17496
https://arxiv.org/pdf/2311.17496
https://hal.sorbonne-universite.fr/hal-02402473v1/file/oe-27-23-33474.pdf
https://hal.sorbonne-universite.fr/hal-02402473v1/file/oe-27-23-33474.pdf
https://pypi.org/project/pillow/
https://arxiv.org/pdf/2404.10480
https://arxiv.org/pdf/2404.10480
https://numpy.org/
https://www.edmundoptics.com/p/BFS-U3-120S4M-CS-USB3-Blackflyreg-S-Monochrome-Camera/40171
https://www.edmundoptics.com/p/BFS-U3-120S4M-CS-USB3-Blackflyreg-S-Monochrome-Camera/40171

references 31

[34] xgimi. Understanding the Functions and Importance of DMDs
in Smart Projectors. https://us.xgimi.com/blogs/projectors-101/

dmd-chips-in-dlp-smart-projectors

[35] Nir Navon, Robert P. Smith, Zoran Hadzibabic. Department of Physics, Yale
University, Clarendon Laboratory, University of Oxford, Cavendish Labo-
ratory, University of Cambridge. Quantum Gases in Optical Boxes. DOI
https://arxiv.org/pdf/2106.09716

https://us.xgimi.com/blogs/projectors-101/dmd-chips-in-dlp-smart-projectors
https://us.xgimi.com/blogs/projectors-101/dmd-chips-in-dlp-smart-projectors
https://arxiv.org/pdf/2106.09716

references 32

appendix

Finished setup

The setup planned to be implemented in the experiment, Figure 40, is set up already.
The beginning is the same as in Figure 11. The camera is placed after another
telescope, consisting of f3=500 mm and f4=100 mm. Due to space issues it is not
possible to place the camera after f2=100 mm by using a beam shaper for example.
The next demagnification stage for the experiment consists of the lenses f3=500 mm
and f4=100 mm. The demagnification for the camera was chosen smaller in order
to avoid limitations due to the cameras pixelsize and still be able to get a good
resolution, which leads to better results regarding the potentials optimization. A
lower demagnification would be better, but was again not possible due to space
issues. Because the beam is splitted with a cube after the f3=500 mm lens and lead
to the camera another λ

2 waveplate was added to maintain polarization. The total
demagnification then is 1/75.

Figure 40: Final setup intended to be implemented into the experiment.

references 33

Plots for optimization of Kp

Table 1: The error and flatness are calculated for each iteration according to (5.5) and (5.6)
and plotted against the iteration at which the image was taken. The initial display,
Figure 21, is denoted with iteration zero, all in all ten iterations are performed. This
is done for different Kp values (5.8) and a constand minP value. The Kp value
corresponding is written above each pair of figures.

Kp=0.1

0 2 4 6 8
Iteration

10

15

20

25

30

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

81

82

83

84

85

86

87

88

89

Fl
at

ne
ss

 in
 %

Data

Kp=0.2

0 2 4 6 8
Iteration

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

83

84

85

86

87

88

89

Fl
at

ne
ss

 in
 %

Data

Continued on next page

references 34

Table 1: (Continued)
Kp=0.3

0 2 4 6 8
Iteration

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

82

83

84

85

86

87

88

Fl
at

ne
ss

 in
 %

Data

Kp=0.4

0 2 4 6 8
Iteration

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5

88.0

Fl
at

ne
ss

 in
 %

Data

Kp=0.5

0 2 4 6 8
Iteration

20

40

60

80

100

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Fl
at

ne
ss

 in
 %

Data

Kp=0.6

0 2 4 6 8
Iteration

5

10

15

20

25

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

40

50

60

70

80

90

Fl
at

ne
ss

 in
 %

Data

Continued on next page

references 35

Table 1: (Continued)
Kp=0.7

0 2 4 6 8
Iteration

10

15

20

25

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

20

0

20

40

60

80

Fl
at

ne
ss

 in
 %

Data

Kp=0.8

0 2 4 6 8
Iteration

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

40

20

0

20

40

60

80

Fl
at

ne
ss

 in
 %

Data

Kp=0.9

0 2 4 6 8
Iteration

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

100

75

50

25

0

25

50

75

Fl
at

ne
ss

 in
 %

Data

Kp=1.0

0 2 4 6 8
Iteration

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Er
ro

r i
n

%

Data

0 2 4 6 8
Iteration

40

20

0

20

40

60

80

Fl
at

ne
ss

 in
 %

Data

references 36

Python Code

In the following the python code of the main file, see Listing 1 as well as the defined
functions, see Listing 2 that are imported in the main file are shown.

Listing 2: Main file DMD.py. Python code that was used to display and correct the different
patterns. This version of the code isn’t automated, since the setup used for this
thesis isn’t very stable in position meaning the crop of the images has to be adjusted
by hand over time since automated methods lack in precision.

1

2 ############HEADER##

3 import PIL

4 import numpy as np

5 import scipy

6 from scipy.ndimage import rotate

7 import matplotlib.pyplot as plt

8 import PIL.Image as Image

9 import time

10 import sys

11 import matplotlib as mpl

12 from ALP4 import *
13 from PIL import Image

14 from PIL import Image, ImageDraw

15 import os

16 from scipy.optimize import curve_fit

17 import scipy

18 import cv2

19 import threading

20 import time

21

22 #package needed to access camera. the package is distributed by FLIR. please look into

README for installation guidance

23 from pyspin import PySpin

24 from Definition import Constants as const

25 from Definition import Functions as func

26 from Definition import access_camera as access_c

27

28

29

30 # Main code

31

32 if __name__ == "__main__":

33

34 #######IMPORT CONSTANTS##

35 #If you want to adjust them, please look into Definition\Constants.py

36

37 #constants for DMD

38 display_time = const.display_time

39 display_time_iterate = const.display_time_iterate

40 mirror_state= const.mirror_state

41 mirror_size = const.mirror_size # = a

42 Nx = const.Nx

43 Ny = const.Ny

44 pixel_number = (Nx, Ny)

45

46 Demagnification=const.Demagnification

47 magnification = const.magnification

48 Rotation_angle=const.Rotation_Angle

49 ratio_px=const.ratio_px

50

51 #import images

52 image_path = const.image_path

53 img_path_old = const.img_path_old

54

55 #constants for calculation of the error

56 minP=const.minP

57 Kp=const.Kp

58

59 #constants for calculation of convolution with the PSF

references 37

60 newsize=const.newsize

61 sigmax=const.sigmax

62 sigmay=const.sigmay

63 size_of_resize=const.size_of_resize

64

65 #constants for torrus

66 outer_radius = const.outer_radius

67 inner_radius = const.inner_radius

68

69 #constants to save plots

70 save_folder = const.save_folder

71 folder_path = const.folder_path

72

73 #constants to calculate plots

74 minP_scaled=const.minP_scaled

75 num_angles = const.num_angles

76 num_samples = const.num_samples

77

78 #constants for cropping boundaries of the recorded image

79 top_exp = const.top_exp

80 bottom_exp = const.bottom_exp

81 left_exp = const.left_exp

82 right_exp = const.right_exp

83

84 #constants for cropping boundaries of the target image

85 top_target = const.top_target

86 bottom_target = const.bottom_target

87 left_target = const.left_target

88 right_target = const.right_target

89

90 #constants to crop polar transformed image [:,269:413]

91 min_r = const.min_r

92 max_r = const.max_r

93

94 #####constants for the camera

95 exposure = const.exposure

96 gain = const.gain

97

98 #constant for amount of iterations

99 number_of_iterations = const.number_of_iterations

100

101 ######START

###

102

103 ####Creating of the target pattern####################

104 img_rect = func.rectangle(pixel_number, (960,540), 200, 200, a=mirror_state)

105 img_torrus = func.torrus(outer_radius, inner_radius)

106

107 #####LOAD IMAGES, crop and rotate them accordingly#####

108 im_array_cropped = func.preprocess_recorded_image(image_path, top_exp, bottom_exp,

left_exp, right_exp, Rotation_angle)

109 img_exp=im_array_cropped

110 #im_array_cropped=im_array[1320:1780,1175:1635] #for points magni

111 intensity_value = im_array[1144:1215,1444:1512]

112 #outcomment for display

113 intensity_value_previous = Image.open(r"D:\dmd thesis\FS testing\torrus\Iris\use

filter\0.bmp").rotate(Rotation_angle)

114 im_array_intensity=np.transpose(np.array(intensity_value_previous))

115 intensity_value_previous = im_array_intensity[1144:1215,1444:1512]

116

117

118 def calculate_minP():

119 minP=80

120 reference_intensity_value_previous = np.mean(intensity_value_previous)

121 reference_intensity_value = np.mean(intensity_value)

122 print("previous: ", reference_intensity_value_previous, "now: ",

reference_intensity_value)

123 if reference_intensity_value==reference_intensity_value_previous:

124 print("No intensity fluctuation")

125 else:

126 ratio = reference_intensity_value/reference_intensity_value_previous

references 38

127 minP=minP*ratio

128 print("fluctuation of: ", ratio)

129 return minP

130

131 minP=calculate_minP()

132 print("minP: ", minP)

133

134 img_old=Image.open(img_path_old)

135

136

137 ######DEFINE REFERENCE PATTERN the error calculation is based on#########

138 #use this for rectangle

139 ’’’

140 rect_size=im_array_cropped.shape[0]

141 pixel_number_target=[rect_size,rect_size]

142 print("pixel_number_target", pixel_number_target)

143 center=[rect_size//2,rect_size//2]

144 target_img=minP*func.rectangle(pixel_number_target,center, rect_size//2, rect_size//2,

a=mirror_state)

145 ’’’

146 torrus_resized = func.torrus(outer_radius*magnification, inner_radius*magnification)

147 target_img = minP*torrus_resized[top_target:bottom_target,left_target:right_target]#

[669:1251,249:831]

148

149 #for display and 1st iteration img_old=target_img, then please outcomment.

150 img_old=target_img

151

152 ##################### PID LOOP and CREATION OF THE NEW IMAGE ################

153 error=Kp*(target_img-img_exp)

154 #use this only for torrus

155 error = func.filter_background_noise_for_torrus(error, inner_radius, outer_radius,

magnification)

156

157 new_img=img_old+error

158 #img_close() needs to be OUTCOMMENTED for display and first iteration. Otherwise you

will get an error.

159 #img_old.close()

160

161 ###################### CONVOLUTION WITH THE PSF ##################

162 #convolution of image with added error with psf

163 newarray=func.convolve_and_save_new_image(new_img, newsize, sigmax, sigmay,

size_of_resize)

164

165 ############## CREATION OF THE NEW FLOYD STEINBERG IMAGE ####################

166 img_FS=func.create_floyd_steinberg_image(newarray,Nx,Ny)

167

168 #####DISPLAY ON THE DMD##

169 #func.display_DMD([img_torrus], nbImg = 1, display_time = display_time)

170 #func.display_DMD([img_rect], nbImg = 1, display_time = display_time)

171 func.display_DMD([img_FS], nbImg = 1, display_time = display_time)

Listing 3: Functions.py file. Python code where all functions are defined for importation in
the DMD.py file. Furthermore the functions used to plot the data, calculate the
errors and more are also defined here.

1

2 import PIL

3 import numpy as np

4 import scipy

5 from scipy.ndimage import rotate

6 import matplotlib.pyplot as plt

7 import PIL.Image as Image

8 import time

9 import sys

10 #from PIL import image

11 import matplotlib as mpl

12 from ALP4 import *
13 from PIL import Image

14 import cv2

15 import os

references 39

16 import os

17 from scipy.optimize import curve_fit

18 import scipy

19 import cv2

20

21 #Functions

22 def plot_intensity(image_paths,Rotation_angle):

23 plt.figure()

24 i=0

25 for image_path in image_paths:

26 img = Image.open(image_path).rotate(Rotation_angle)

27 img_gray = img.convert("L")

28 img_array = np.array(img_gray)

29 row_intensity = np.mean(img_array, axis=1)

30 plt.plot(row_intensity, label=i)

31 i+=1

32 plt.xlabel("Rows")

33 plt.ylabel("Intensity")

34 plt.title("Intensity of Rows")

35 plt.legend()

36 plt.show()

37

38

39 def display_DMD(img, nbImg, display_time):

40 # Load the Vialux .dll

41 DMD = ALP4(version = ’4.3’,libDir="./ALP-4.3 API")

42 # initialize the device

43 DMD.Initialize()

44 # Binary amplitude image

45

46 # Quantization of the image between 1 (on/off) and 8 (256 pwm grayscale levels).

47 bitDepth = 1

48 # WARNING even for a boolean quantization, the values readed are 0 and 255.

49 # Array generation

50

51 imgAff = img[0].ravel(order=’F’)*255 # Modification to a 1D array for the DMD

52

53 if nbImg>1: #Array generation for a sequence with more than 1 image

54 for i in range(nbImg-1):

55 np.concatenate([imgAff,(img[i+1].ravel(order=’F’)*255)])

56

57 # Allocate the onboard memory for the image sequence

58 # you can load many pictures change only nbImg

59 seq1 = DMD.SeqAlloc(nbImg, bitDepth = bitDepth)

60

61 # Send the image sequence as a 1D list/array/numpy array

62 # enter the images of the sequences

63

64 DMD.SeqPut(imgData =imgAff.ravel(order=’F’))

65

66 DMD.SeqControl(controlType=2104 , value=2106) # activation off the uninterrupted mode

67

68 # set image rate to 50 Hz so period of 2e4 s

69 DMD.SetTiming(pictureTime = 2000)

70

71 # Run the sequence in an infinite loop

72 DMD.Run(loop=True)

73

74 ###there is two method for stopping the DMD: after a chosen time of after pressing

enter. Only one method work when the programm is running (not in comment)

75 time.sleep(display_time) # stop the programm for the display time (in seconds) but let

the DMD running his sequence

76

77 #input("Press enter to stop the DMD") # stop the sequence display after pressing enter

78 # stop the sequence display

79 DMD.Halt()

80 # Free the sequence from the onboard memory

81 DMD.FreeSeq()

82 #De-allocate the device

83 DMD.Free()

84 print("END of display")

references 40

85 return

86

87

88 ### Functions creating different images

89

90 def cross(NumberPixel, ligne_croix, colonne_croix, epaisseur_ligne, epaisseur_colonne):

91 ##creates a cross on the DMD

92 img = np.zeros([NumberPixel[0], NumberPixel[1]], dtype=int)

93

94 # horizontal line

95 img[int(ligne_croix - epaisseur_ligne/2) : int(ligne_croix + epaisseur_ligne/2), :] =

1

96

97 # vertical line

98 img[: , int(colonne_croix - epaisseur_colonne/2) : int(colonne_croix +

epaisseur_colonne/2)] = 1

99 return img

100

101

102

103 def uniform(NumberPixel, a):

104 """ Creates a uniform image on the DMD (a = 0 or 1) """

105 img = np.zeros([NumberPixel[0], NumberPixel[1]], dtype=int)

106 img[:,:] = a

107 return img

108

109

110

111 def k_pixels(NumberPixel, k, a, position_ligne, debut_trait):

112

113 """

114 Creates an image with k pixels equal to a (a = 0 or 1)

115

116 line_position is the line on which the few pixels will be changed

117

118 start_trait is the column where the stroke begins

119 """

120

121 # Line smaller than DMD

122

123 assert debut_trait + k <= NumberPixel[1]

124

125 # Some black pixels on a white background

126

127 if a==0:

128 img = np.ones([NumberPixel[0], NumberPixel[1]], dtype=int)

129 img[position_ligne, debut_trait : debut_trait + k] = 0

130

131 # A few white pixels on a black background

132

133 else:

134 img = np.zeros([NumberPixel[0], NumberPixel[1]], dtype=int)

135 img[position_ligne, debut_trait : debut_trait + k] = 1

136

137 return img

138

139

140 def point(NumberPixel):

141 img = np.zeros([NumberPixel[0], NumberPixel[1]], dtype=int)

142 img[960,540]=1

143 return img

144

145

146 def points_magnification(NombrePixel):

147 img = np.zeros([NombrePixel[0], NombrePixel[1]], dtype=int)

148 img[960, 540] = 1

149 img[961, 540] = 1

150 img[960, 541] = 1

151 img[961, 541] = 1

152

153

references 41

154

155 # Create a 14x14 rectangle centered around (1256, 540)

156 start_x = 1256 - 4 # 7 pixels left of 1256

157 end_x = 1256 + 4 # 7 pixels right of 1256

158 start_y = 540 - 4 # 7 pixels above 540

159 end_y = 540 + 4 # 7 pixels below 540

160

161 img[start_x:end_x + 1, start_y:end_y + 1] = 1

162

163 img[960, 840] = 1

164 img[961, 840] = 1

165 img[961, 841] = 1

166 img[960, 841] = 1

167 return img

168

169

170

171 def rectangle(NumberPixel, centre, widthdividedbytwo, lengthdividedbytwo, a):

172

173 """Creates a rectangle with the value a (a = 0 or 1) on the DMD.

174

175 center must be of the form (center_row, center_column)

176

177 Attention, NumberPixel = (number of column, number of row)

178

179 """

180 # Rectangle smaller than the DMD

181

182 assert centre[1] - widthdividedbytwo >= 0

183

184 assert centre[1] + widthdividedbytwo <= NumberPixel[1]

185

186 assert centre[0] - lengthdividedbytwo >=0

187

188 assert centre[0] + lengthdividedbytwo <= NumberPixel[0]

189

190 if a == 0:

191 img = np.ones([NumberPixel[0], NumberPixel[1]], dtype=int)

192 for ligne in range(centre[0] - lengthdividedbytwo, centre[0] + lengthdividedbytwo)

:

193 img[ligne, centre[1] - widthdividedbytwo : centre[1] + widthdividedbytwo] = 0

194

195 else :

196 img = np.zeros([NumberPixel[0], NumberPixel[1]], dtype=int)

197 for ligne in range(centre[0] - lengthdividedbytwo, centre[0] + lengthdividedbytwo)

:

198 img[ligne, centre[1] - widthdividedbytwo : centre[1] + widthdividedbytwo] = 1

199

200 return img

201

202

203

204

205 def display_torus_and_rectangle(NumberPixel, outer_radius, inner_radius, rectangle_size):

206 # Create a torus

207 torus_img = torrus(outer_radius, inner_radius)

208

209 # Define the rectangle parameters

210 centre = (rectangle_size[0] // 2 + 500, rectangle_size[1] // 2 + 400) # Center of

rectangle

211 widthdividedbytwo = rectangle_size[1] // 2

212 lengthdividedbytwo = rectangle_size[0] // 2

213 a = 1 # Rectangle value

214

215 # Create a rectangle in the top-left corner

216 rectangle_img = rectangle(NumberPixel, centre, widthdividedbytwo, lengthdividedbytwo,

a)

217

218 # Combine the images (together, torus + rectangle)

219 combined_img = torus_img + rectangle_img

220

references 42

221 # Display the combined image

222 plt.imshow(combined_img, cmap=’gray’)

223 plt.title(’Torus and Rectangle in Top-Left Corner’)

224 plt.axis(’off’)

225 plt.show()

226

227 return combined_img

228

229

230

231 def circle(r):

232 img = np.zeros([1920, 1080], dtype=int)

233 for x in range(1920):

234 for y in range(1080):

235 if((x-960)**2+(y-540)**2)<(r*r):

236 img[x,y]=1

237 return img

238

239

240 def torrus(outer_radius, inner_radius):

241 return (circle(outer_radius)-circle(inner_radius))>0.5

242

243

244 def sort_bmp_files(folder_path):

245 # List all BMP files in the directory

246 bmp_files = [f for f in os.listdir(folder_path) if f.endswith(’.bmp’)]

247

248 # Sort the files based on the integer part of the filename

249 sorted_bmp_files = sorted(bmp_files, key=lambda x: int(os.path.splitext(x)[0]))

250

251 return sorted_bmp_files

252

253

254 def plot_intensities_torrus(bmp_files, folder_path, Rotation_angle, min_r,max_r, top_exp,

bottom_exp, left_exp, right_exp):

255 plt.figure()

256 i=0

257 for bmp_file in bmp_files:

258 # Load the image

259 img_path = os.path.join(folder_path, bmp_file)

260 image = Image.open(img_path).convert(’L’).rotate(Rotation_angle) # Convert to

grayscale and rotate

261 img_array = np.transpose(np.array(image))[top_exp:bottom_exp,left_exp:right_exp]

262

263 #--- the following holds the square root of the sum of squares of the image

dimensions ---

264 #--- this is done so that the entire width/height of the original image is used to

express the complete circular range of the resulting polar image ---

265 value = np.sqrt(((img_array.shape[0]/2.0)**2.0)+((img_array.shape[1]/2.0)**2.0))

266 polar_image = cv2.linearPolar(img_array,(img_array.shape[0]/2, img_array.shape

[1]/2), value, cv2.WARP_FILL_OUTLIERS)

267 polar_image = polar_image.astype(np.uint8)[:,min_r:max_r]

268 ’’’

269 plt.figure(1)

270 plt.imshow(polar_image)

271 plt.colorbar()

272 plt.title(f"polar transformed image for {bmp_file}")

273 plt.show()

274

275 polar_image_converted=Image.fromarray(np.uint8((np.array(polar_image))),mode="L")

276 polar_image_converted.save(f"polar_image{bmp_file}")

277 ’’’

278 row_intensity = np.mean(polar_image, axis=1)

279 num_rows = polar_image.shape[0]

280 angles = np.linspace(0, 2 * np.pi, num_rows)

281 plt.plot(angles, row_intensity, label=bmp_file)

282 i+=1

283 plt.xticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi], [’0’, r’$\frac{\pi}{2}$’, r’π’

, r’$\frac{3\pi}{2}$’, r’2π’])

284 plt.ylabel(’Average intensity’)

285 #plt.title(f’Average Intensity’)

references 43

286 plt.grid(True)

287 plt.legend()

288 plt.show()

289

290

291 def plot_from_conv(errors,iterations,ylabel):

292 # Ensure iterations and errors_final have the same length

293 assert len(iterations) == len(errors), "Lengths of iterations and errors_final do not

match"

294

295 min_index = np.argmin(errors)

296 max_index = np.argmax(errors)

297 print(f"Minimum of {ylabel}: ", np.min(errors), f"for iteration {min_index}.", f"\

nMaximum of {ylabel}: ", np.max(errors), f"for iteration {max_index}.")

298 plt.scatter(iterations, errors, color="red", label=’Data’)

299 plt.plot(iterations, errors, ’b-’, label=’’)

300 plt.xlabel(’Iteration’)

301 plt.ylabel(f’{ylabel}’)

302 plt.title(f’’)

303 plt.legend()

304 plt.show()

305

306

307 def convolve_target(target_exp, sigmax, sigmay):

308 newsize = target_exp.shape[0]

309 x=np.linspace(-newsize//2,newsize//2,newsize)

310 y=np.linspace(-newsize//2,newsize//2,newsize)

311 exp_convol=np.ones((newsize,newsize))

312 for i in range(exp_convol.shape[0]):

313 for k in range(exp_convol.shape[0]):

314 exp_convol[i,k]=1/2/np.pi/sigmax/sigmay*np.exp(-1/2*x[i]**2/sigmax**2-1/2*y[k

]**2/sigmay**2)

315 target_exp=scipy.signal.fftconvolve(target_exp,exp_convol,mode="same") #this is the

image the camera should record in a theoretical and ideal world

316 target_exp_cropped=target_exp#[869:1051,449:631] #crop out just the target

317 target_exp2_resized = Image.fromarray(np.uint8(target_exp_cropped), mode="L").resize((

newsize, newsize))

318 ’’’

319 plt.figure(1)

320 plt.imshow(target_exp2_resized)

321 plt.title("")

322 plt.colorbar()

323 plt.show()

324 ’’’

325 return target_exp_cropped

326

327 def calculate_error_from_convolution(bmp_files, target_exp, sigmax, sigmay, folder_path,

Rotation_angle, minP_scaled, inner_radius, outer_radius, magnification, top_exp,

bottom_exp, left_exp, right_exp, min_r,max_r):

328 print("Calculating error from convolution...")

329

330 errors_calculated = []

331 flatness_calculated = []

332 mean_intensities = []

333

334 convolved_target = convolve_target(target_exp,sigmax, sigmay)

335

336 for bmp_file in bmp_files:

337 # Load, rotate, transpose and crop the image

338 img_path = os.path.join(folder_path, bmp_file)

339 image = Image.open(img_path).convert(’L’).rotate(Rotation_angle) # Convert to

grayscale and rotate

340 image = np.transpose(np.array(image))

341 image_cropped = image[top_exp:bottom_exp,left_exp:right_exp]#[1560:2142,1416:1998]

342

343 len_rows, len_cols = image_cropped.shape

344

345 plt.figure(1)

346 plt.imshow(image_cropped, cmap=’viridis’)

347 plt.title("image experiment")

348 plt.colorbar()

references 44

349

350 plt.figure(2)

351 plt.imshow(minP_scaled*target_exp, cmap=’viridis’)

352 plt.title("target experiment")

353 plt.colorbar()

354

355 plt.show()

356 #exit(0)

357

358 ###ERROR####################

359 #calculate the error and save the file to later on save pixel values in

initialized lits and plot

360 error = minP_scaled*convolved_target - image_cropped

361

362 # Get the dimensions of the image

363 height, width = error.shape

364

365 center = (width // 2, height // 2)

366 inner_radius_temp = inner_radius*magnification-1

367 outer_radius_temp = outer_radius*magnification+1

368

369 # Create a grid of coordinates

370 y, x = np.ogrid[:height, :width]

371

372 # Calculate the distance from the center

373 distance_from_center = np.sqrt((x - center[0])**2 + (y - center[1])**2)

374 print("inner radius: ", inner_radius_temp, "outer radius: ", outer_radius_temp)

375 # Create the mask for the torus

376 mask = (distance_from_center >= inner_radius_temp) & (distance_from_center <=

outer_radius_temp)

377

378 #first transform the cropped image to polar coordinates to calculate the mean

intensity of the torrus

379 value = np.sqrt(((image_cropped.shape[0]/2.0)**2.0)+((image_cropped.shape[1]/2.0)

**2.0))

380 polar_image = cv2.linearPolar(image_cropped,(image_cropped.shape[0]/2,

image_cropped.shape[1]/2), value, cv2.WARP_FILL_OUTLIERS)

381 image_cropped_polar = polar_image.astype(np.uint8)[:,min_r:max_r]

382

383 len_rows, len_cols = image_cropped_polar.shape

384

385

386 # Apply the mask to the error image, setting values outside the torus to zero

387 error_cleaned = np.where(mask, error, 0)

388

389 error=error_cleaned

390

391 error_calculated = 100*(np.sqrt(1/(len_cols * len_rows)*np.sum((error/(np.max(

image_cropped_polar)-np.min(image_cropped_polar)))**2)))

392 errors_calculated.append(error_calculated)

393

394 ###FLATNESS##

395

396 mean_intensity = np.sqrt(np.sum(image_cropped_polar)/(len_rows * len_cols))

397 print("mean intensity: ", mean_intensity)

398

399 flatness = mean_intensity*target_exp - image_cropped

400

401 real_mean_intensity = np.mean(image_cropped_polar)

402 mean_intensities.append(real_mean_intensity)

403

404 flatness_calc = 100*(1-np.sqrt(1/(len_cols * len_rows)*np.sum(((flatness)/

mean_intensity)**2)))

405

406 flatness_calculated.append(flatness_calc)

407

408 return errors_calculated, flatness_calculated, mean_intensities

409

410

411 def plot_mean_intensity_of_each_iteration(iterations, mean_intensities):

412 plt.scatter(iterations, mean_intensities, color="red", label=’Data’)

references 45

413 plt.plot(iterations, mean_intensities, ’b-’, label=’’)

414 plt.xlabel(’Iteration’)

415 plt.ylabel(’mean intensities’)

416 #plt.title(f’’)

417 plt.legend()

418 plt.show()

419

420

421 def convolve_and_save_new_image(new_img, newsize, sigmax, sigmay, size_of_resize):

422 #convolution of image with added error with psf

423 x=np.linspace(-newsize//2,newsize//2,newsize)

424 y=np.linspace(-newsize//2,newsize//2,newsize)

425

426 exp_convol=np.ones((newsize,newsize))

427 for i in range(exp_convol.shape[0]):

428 for k in range(exp_convol.shape[0]):

429 exp_convol[i,k]=1/2/np.pi/sigmax/sigmay*np.exp(-1/2*x[i]**2/sigmax**2-1/2*y[k

]**2/sigmay**2)

430 img_conv=scipy.signal.fftconvolve(new_img,exp_convol,mode="same")

431 img1=Image.fromarray(np.uint8((np.array(img_conv))),mode="L")

432 img1.save("previous.bmp")

433

434 img2=img1.resize((size_of_resize, size_of_resize))

435

436 newarray=np.array(img2)

437 return newarray

438

439

440 def create_floyd_steinberg_image(newarray,Nx,Ny):

441 #RESCALING to necessary array size

442 background=PIL.Image.new(mode="L",size=(Ny,Nx)) #creates array with zeros in size of

dmd

443 background_array=np.array(background)

444

445 dim_img=newarray.shape

446 print("Dimension convolved image: ", dim_img)

447 for i in range(dim_img[0]):

448 for k in range(dim_img[1]):

449 background_array[(960-dim_img[1]//2)+i, (540-dim_img[0]//2)+k]+=newarray[i,k]

450

451 #for normalization of dithering

452 #print("max background array pre setting pixel values >255=255: ", np.max(

background_array))

453 background_array[background_array>255]=255

454 #print("max background array pre 255*np.max(): ", np.max(background_array))

455 background_array=np.array((255/np.max(background_array))*background_array)

456 #print("max background array: ", np.max(background_array))

457

458

459 #DITHERING

460 imgfinal=Image.fromarray(np.uint8(background_array),mode="L")

461 img_FS=np.array(imgfinal.convert("1",dither=Image.Dither.FLOYDSTEINBERG))#>0.5

462

463 return img_FS

464

465

466 def preprocess_recorded_image(image_path, top_exp, bottom_exp, left_exp, right_exp,

Rotation_angle):

467 imgbmp=Image.open(image_path).rotate(Rotation_angle)

468 im_array=np.transpose(np.array(imgbmp))

469 im_array_cropped=im_array[top_exp:bottom_exp,left_exp:right_exp]#[1560:2142,1416:1998]

470

471 return im_array_cropped

472

473 def preprocess_old_image(img_path_old, Rotation_angle):

474 previous_image=Image.open(img_path_old).rotate(Rotation_angle)

475 previous_array=np.transpose(np.array(previous_image))

476

477 return previous_array

478

479

references 46

480 def filter_background_noise_for_torrus(error, inner_radius, outer_radius, magnification):

481 ###filter out errors caused by noise of the background###

482 height, width = error.shape

483

484 center = (width // 2, height // 2)

485 inner_radius_1 = inner_radius*magnification

486 outer_radius_1 = outer_radius*magnification

487

488 # Create a grid of coordinates

489 y, x = np.ogrid[:height, :width]

490

491 # Calculate the distance from the center

492 distance_from_center = np.sqrt((x - center[0])**2 + (y - center[1])**2)

493

494 # Create the mask for the torus

495 mask = (distance_from_center >= inner_radius_1) & (distance_from_center <=

outer_radius_1)

496

497 # Apply the mask to the error image, setting values outside the torus to zero

498 error_cleaned = np.where(mask, error, 0)

499 error1=error_cleaned

500

501 return error1

	Abstract
	Zusammenfassung
	Ehrenwörtliche Erklärung
	1 Introduction
	2 Optical trapping
	3 Digital Mircromirror Devices
	3.1 Diffraction
	3.2 Diffraction pattern of the DMD
	3.3 Setup
	3.4 Point-Spread-Function

	4 Floyd-Steinberg Algorithm
	4.1 Correction loop

	5 Experimental setup
	5.1 Point-Spread-Function in framework of Digital Micromirror Devices
	5.2 Setting up the optimization loop
	5.3 Initial test - Optimization for a rectangle
	5.4 Characterizing the approximation of the potential
	5.5 Optimization of Kp
	5.6 Optimization for a torus
	5.7 Fluctuations
	5.8 Intensity compensation

	6 Conclusion and outlook
	References
	Appendix

